氮氧化硅栅极氧化介电层主要是通过对预先形成的SiO2薄膜进行氮掺杂或氮化处理得到的,氮化的工艺主要有热处理氮化(thermal nitridation)和化学或物理沉积(chemical or physical deposition)两种。
早期的氮氧化硅栅极氧化层的制备是用炉管或单一晶片的热处理反应室来形成氧化膜,然后再对形成的二氧化硅进行原位或非原位的热处理氮化,氮化的气体为N2O、NO或NH3中的一种或几种。这种氮化方法工艺简单,可缺点是掺杂的氮含量太少,对硼元素的阻挡作用有限;并且掺杂的氮位置靠近SiO2和硅底材之间,界面态不如纯氧化硅,对载流子的迁移率、对器件的可靠性都有一定的影响。用热处理氮化得到的氮氧化硅主要用于0.13μm及以上的CMOS器件中栅极氧化介电层的制备。
用化学或物理沉积(chemical or physical deposition)方式来形成SiON 的方法很多,比如低能量的离子注入、喷射式蒸汽沉积、原子层沉积、等离子体氮化等,随着 CMOS 进入90nm 以下,栅极氧化介电层及多晶硅的厚度越来越薄,而源漏极及轻掺杂源漏极的掺杂浓度相对越来越高,这就要求作为栅极氧化层的氮氧化硅中,氮的含量越来越高,同时尽可能的靠近上表面。在这种情况下,等离子体氮化工艺就应运而生。它主要是用氮气或氮气和惰性气体(如氦气或氩气)的混合气,在磁场和电场感应下产生等离子体,而形成的氮离子和含氮的活性分子/原子则通过表面势扩散至预先形成的超薄氧化硅表面,取代部分断裂的硅氧键中氧的位置,并在后续的热退火步骤中将已经形成较为稳定的硅氮成键而固定下来。一个典型的等离子体复氧化硅工艺示意图如图4.2所示,它具有工艺可控性和重现性好、形成的氮氧化硅氮含量高、均匀性好等优点。等离子体氮化工艺的主要设备生产商有应用材料公司(Applied Material)和东电电子(Tokyo Electron)。需要特别指出的是,复氧化硅工艺复杂,材料受外部环境影响较大,不仅前后工艺流程间要控制时间(如与前面的预清洗工艺间,与后面的多晶硅沉积工艺间),本身工艺步骤间也要控制时间间隔和环境条件,所以通常的等离子体复化工艺设备会把形成SiO2的腔体。等离子体氮化的腔体及随后的退火处理腔体都整合在一起(见图4.3)。